For most individuals, aside from the multiple benefits of the therapy, one of the most relevant effects of PEMF therapy is the improvement of painful conditions regardless of their origin. Pain mechanisms are complex and have peripheral and central nervous system aspects.

During the last 100 years, theories of pain mechanism have evolved from specificity and summation models to the popular Gate Control Theory. The latter pain theory, proposed by Melzack/Wall/Casey (Wall and Melzack, 1989), has become the most important development in the field of pain management. Pain perception is no longer a straightforward afferent transmission of pain signal.

In biology, signal transduction is a mechanism that converts a mechanical or chemical stimulus to a cell into a specific cellular response. Signal transduction starts with a signal to a receptor, and ends with a change in cell behaviour.

Overview of signal transduction pathway. Click on image to enlarge.

Transmembrane receptors move across the cell membrane with half of the receptor outside the cell and the other half inside the cell. The signal, such as a chemical signal, binds to the outer half of the receptor, which changes its shape and conveys another signal inside the cell. Sometimes there is a long cascade of signals, one after the other. Eventually, the signal creates a change in the cell, either in the DNA of the nucleus or the cytoplasm outside the nucleus. In the chronic pain state, pain signal generation can actually occur in the central nervous system without peripheral noxious stimulation. In pain management, modulation of the pain signal transmission is a far better choice than neural destruction, and this can be achieved with PEMF. Scientific evidence shows that acute persistent pain eventually sensitizes wide dynamic neurons in the dorsal horn of the spinal cord, the wind-up phenomenon, constituting the basis of developing chronic pain syndromes (Kristensen, 1992). Persistent and excessive pain has no biological good or necessary function. It is actually harmful to our well-being. Therefore, pain needs to be treated as early and as completely as possible and not to be left alone (Adams et al. 1997). The primary symptom in most patients with disorders affecting the soft tissue is pain. In many patients, daily activities are limited as inflammation causes pain and, with it, a restriction of the range of movements. Causes of soft tissue pain can be depicted as musculoskeletal, neurologic, vascular, and referred visceral-somatic or articular (Cailliet, 1991). Early reports of applying electrical current to treat pain date back to before 1800 (Ersek, 1981). PEMF therapy has successfully been used for the control of pain associated with rotator cuff tendonitis, multiple sclerosis, carpal tunnel syndrome, and periarthritis (Battisti et al., 1998; Lecaire et al., 1991). An improvement was observed in 93% of patients suffering from carpal tunnel pain and in 83% in cases of rotator cuff tendonitis. PEMF therapy was also used for treatment of migraine, chronic pelvic pain, neck pain, and whiplash injuries (Rosch et al., 2004). In a March 2003 publication on Pain Management with PEMF Treatment, Dr. William Pawluk explains: “Magnetic fields affect pain perception in many different ways. These actions are both direct and indirect.

●    Direct effects of magnetic fields are: neuron firing, calcium ion movement, membrane potentials, endorphin levels, nitric oxide, dopamine levels, acupuncture actions and nerve regeneration.
●    Indirect benefits of magnetic fields on physiologic function are on: circulation, muscle, edema, tissue oxygen, inflammation, healing, prostaglandins, cellular metabolism and cell energy levels.”  

Short-term effects are thought to be due to a decrease in cortisol and noradrenaline and an increase in serotonin, endorphins and enkephalins. Longer term effects may be due to CNS and/or peripheral nervous system biochemical and neuronal effects in which correction of pain messages occur, and the pain is not just masked as in the case of medication.


Copyright 2016 Magnus Magnetica, LLC   /  Unauthorized use or duplication is prohibited by law.